Sarajevo 21 September 2016

The Environmental Fate of Pesticides EXPOSURE ASSESSMENT

Mara Luini mara.luini@icps.it

ICPS – International Centre for Pesticides and health risk prevention

Predicted environmental concentrations (PECs)

- * To estimate such concentrations in perspective risk assessment, predictive models are used
- Models currently accepted for EU registration of PPP are derived from the work of FOCUS group, i.e. the FOrum for Co-ordination of pesticide fate models and their Use.
 - Models are available for each environmental compartment.

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Ospedale Luigi Sacco POLO UNIVERSITARIO

FOCUS groups

<u>FO</u>rum for the <u>C</u>o-ordination of pesticides fate models and their <u>US</u>e

The work of the FOCUS groups is concerned with providing the tools for estimating environmental concentrations of a.s. for the purpose of their evaluation for inclusion in Annex I.

<u>FO</u>rum for the <u>C</u>o-ordination of pesticides fate models and their <u>US</u>e

The FOCUS organisation:

- steering committee
- working groups.

Working groups. Experts from:

- regulatory authorities,
- > industry
- research institutes.

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Ospedale Luigi Sacco Polo UNIVERSITARIO

- Guidance was firstly developed for leaching to groundwater (FOCUS, 1995) and later for soil persistence and surface water (FOCUS 1996 & 1997).
- The guidance developed by the workgroups included a description of the relevant models and their strengths and weaknesses. Any PEC model calculation assumes a scenario which is therefore an important element of the guidance.

The FOCUS Steering Committee prescribed that about 10 realistic worst case scenarios should be developed, and that input files for these scenarios should be developed



FOCUS RESULTS

Identified proper model for PEC calculation:

FOCUS models

× Soil

- ✓ A very simple equation is used to estimate initial concentration
- 4 different kinetics are used to estimate dissipation of active ingredients over time (SFO, FOMC, DFOP, HS)
- Excel spreadsheet
- Koroundwater
 - ✓ PELMO
 - ✓ PEARL
 - ✓ MACRO
 - ✓ PRZM
- Surface water
 - ✓ Steps 1-2
 - ✓ SWASH package (MACRO, PRZM, TOXSWA) Step3
 - ✓ SWAN (mitigation measures) Step 4
- × Air
 - ✓ Different models are available (e.g. EVA 2.0) for estimating short and long-range transport (rarely used in dossiers)

http://esdac.jrc.ec.europa.eu/projects/focus-dg-sante

JOINT RESEARCH CENTRE EUROPEAN SOIL DATA CENTRE (ESDAC)

DAC > PROJECTS > FOCUS DG SANTE

Q

Events

About ESDAC

FOCUS DG SANTE

Welcome to the home page of FOCUS DG SANTE, i.e. the FOrum for Co-ordination of pesticide fate models and their USe. From this site you can c currently approved versions of FOCUS simulation models and FOCUS scenarios, that are used to calculate the concentrations of plant protection groundwater and surface water in the EU review process according to Regulation (EC) No 1107/2009. Furthermore this site contains links to the refocus workgroups.

This website is refered to by the EC website on Food Safety under "Guidelines on Active Substances and Plant Protection Products" - Fate and Bel

OVERVIEW OF FOCUS DG SANTE	
VERSION CONTROL	
DOCUMENTATION	
FOCUS NOTICE BOARD	
WHAT IS NEW IN FOCUS	

<u>...In practice...</u> How to calculate PEC?

Which information is needed to calculate PECsoil?

- Application details (retrievable from <u>GAP</u>)
 - Rate
 - ✓ Number of applications
 - ✓ Crop(s)
 - If multiple applications are needed: interval between applications
- Crop interception (relative to crop type and BBCH scale)
- Degradation details
 - \checkmark DT_{50} from soil degradation studies

PEC soil calculation

1st tier: DT₅₀ (worst case) from lab studies

Next tiers:

- Worst-case dissipation DT₅₀ from field studies (no normalisation is required)
- Worst-case conditions to be selected:
- ✓ minimal interval between applications
- ✓max AR,
- ✓DT50 worst-case,
- ✓ lower foliar intercept (according to BBCH reported in the GAP table).

Crop interception

Сгор	Bare – emergence	Leaf development	Stem elongation		Flowering		Senescence Ripening	
	BBCH [#]	-						
	0- 09	10-19	20-39		40-89		90-99	
Beans (field + vegetable)	0	25	40		70		80	
Cabbage	0	25	40		70		90	
Carrots	0	25	60		80		80	
Cotton	0	30	60		75		90	
Grass##	0	40	60		90		90	
Linseed	0	30	60		70		90	
Maize	0	25	50		75		90	
Oil seed rape (summer)	0	40	80		80		90	
Oil seed rape (winter)	0	40	80		80		90	
Onions	0	10	25		40		60	
Peas	0	35	55		85		85	
Potatoes	0	15	60		85		50	
Soybean	0	35	55		85		65	
Spring cereals	0	0	BBCH 20-29*	BBCH 30-39*	BBCH 40-69	BBCH 70-89	80-	
			20	80	90	80		
Strawberries	0	30	50		60		60	
Sugar beets	0	20	70 (rosette)		90		90	
Sunflower	0	20	50		75		90	
Tobacco	0	50	70		90		90	
Tomatoes	0	50	70		80		50	
Winter cereals	0	0	BBCH 20-29*	30-39*	BBCH 40-69	BBCH 70-89	80	
			20	80	90	80		

Table 1.5: Interception by other crops dependent on growth stage

[#]The BBCH code is indicative (Meier, 2001).

⁴⁴A value of 90 is used for applications to established turf.

*BBCH code of 20–29 for tillering and 30–39 for elongation.

DT₅₀ normalisation

Temperature normalisation:

the temperature dependence of the degradation rate coefficient of pesticides in soil is usually described by the **Arrhenius relationship**.

$$DT_{50,T1} = DT_{50,Tref} \exp\left[\frac{E_a}{R}\left(\frac{1}{T_{ref}} - \frac{1}{T_1}\right)\right] \quad \text{or} \quad DT_{50,Tref} = DT_{50,Tact} \cdot Q_{10}^{\frac{T_{act} - T_{ref}}{10}}$$

Moisture normalisation:

Soil moisture should be normalised to pF2 (water holding capacity at 10 kPa). Values of WHC at pF2 are soil-specific. If missing, use default values for specific texture. Normalisation follow the **Walker equation**.

$$DT_{50,norm} = DT_{50} \cdot f_{moisture}$$

$$f_{moisture} = \left(\frac{\theta_{act}}{\theta_{ref}}\right)^{0.7}$$
$$f_{moisture} = 1$$

For $\theta_{act} \ge \theta_{ref}$

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Ospedale Luigi Sacco

Metabolites

PECs will be calculated by considering a fake direct application of the metabolite

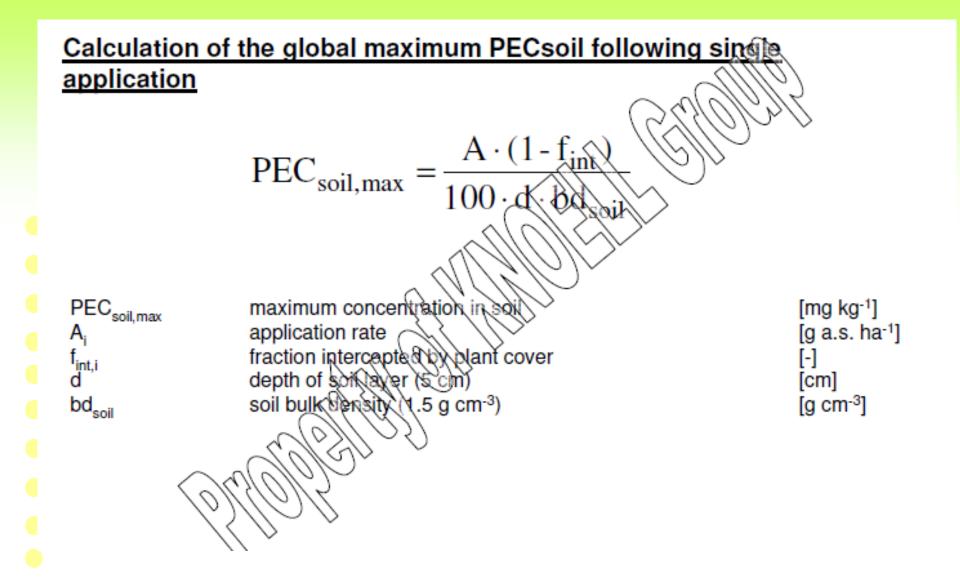
 $AppRate_{met} = AppRate_{par} \cdot MaxObserval(\%)_{met} \cdot \frac{MolWeight_{met}}{MolWeight_{par}}$

Using Formation fraction instead of MaxObserved will result in a further overestimation of the initial PEC.

What metabolites?

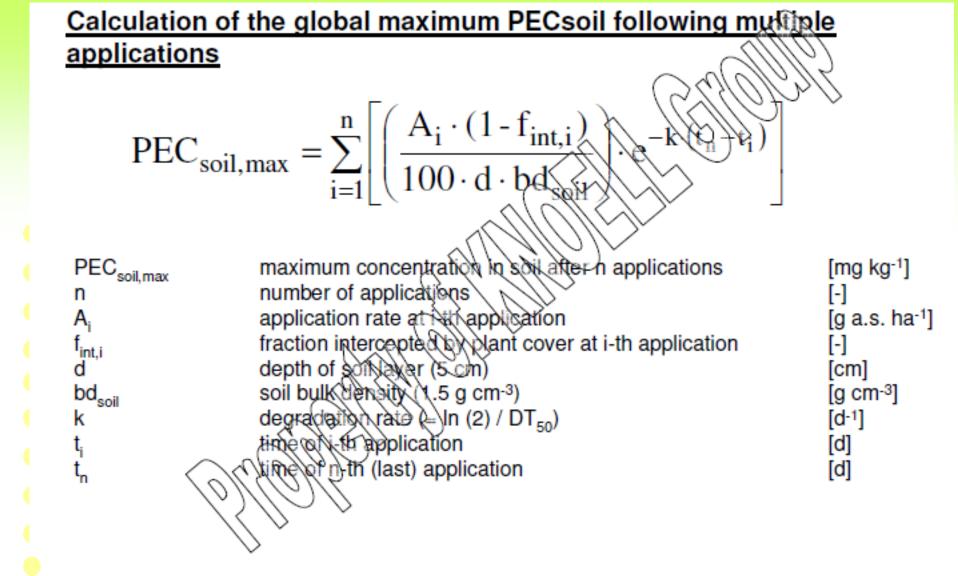
Evaluation is required for metabolites of which the concentration in the soil at any point in time is >10% (of AR), or at 2 subsequent points in time >5% (of AR)

AR = Applied radioactivity


Calculation of Predicted Environmental Concentrations in Soil

General assumptions:

- Uniform distribution of the AS in the upper soil layer
 - 5 cm depth (PEC_{soil,max}, PEC_{soil,act}, and PEC_{soil,twa}
 - 20 cm depth if the AS tends to accumulate in soil PEC_{soil,accu})
 - → DT50 > 100 d and/or DT90
- Dry bulk density: 1.5 g/cm³



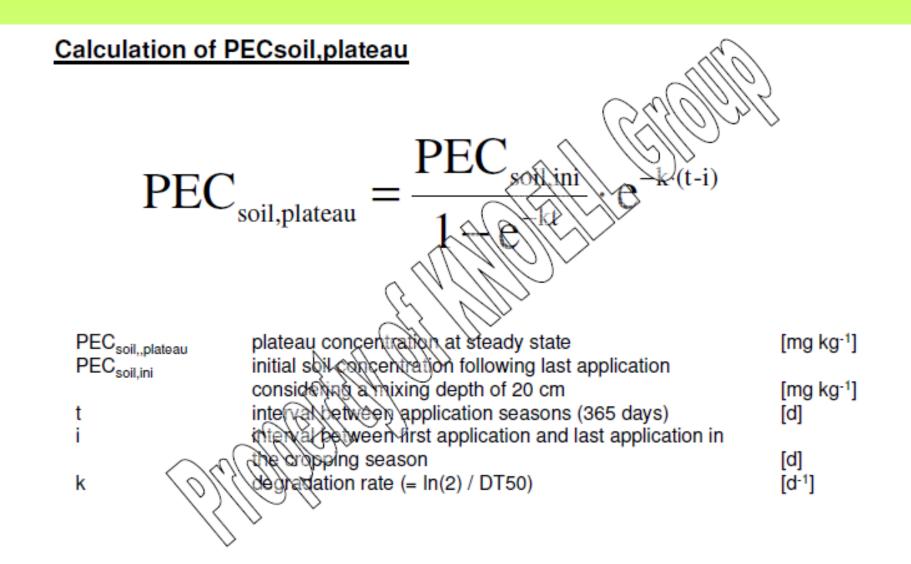
Centro Internazionale per gli Antiparassitari e la

Ospedale Luigi Sacco POLO UNIVERSITARIO

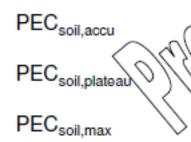
Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Ospedale Luigi Sacco Polo UNIVERSITARIO

Accumulation in soil

If on the basis of soil dissipation studies it is established that DT90field > 1 year the possibility of accumulation of residues in soil and the level at which a plateau concentration.


Calculation of the PECsoil, accu

- Considers the use of an AS for many years (10, 20 or 30)
- Requires the plateau concentration (PECsoil, plateau) of the AS at steady state
- The PECsoil, plateau is defined as the level of residues in soil after the winter regeneration period immediately before the first seasonal application
- The PECsoil,plateau refers soil layer depth of 20 cm (arable crops) or 10 cm (permanent crops) as a result of substance distribution in the top soil after soil cultivation over many years



Calculation of PECsoil, accu

PEC soil, accu

- The PECsoil,accu represents the highest potential soil concentration considering the multi-year accumulation load as background concentration plus the maximum concentration (PECsoil,max) after application in the top soil layer.
- For this purpose, the PECsoil, plateau and the PECsoil, max in the top soil layer are added

= PEC soil, plateau + PEC soil, max

au [mg kg⁻¹] au [mg kg⁻¹] concentration at steady state (plateau concentration) related to the plough layer depth (e.g. 20 cm) [mg kg⁻¹] maximum concentration with respect to the soil load after one application period related to a soil layer depth of 5 cm [mg kg⁻¹]

PEC soil calculation

Key How: excel spreadsheet

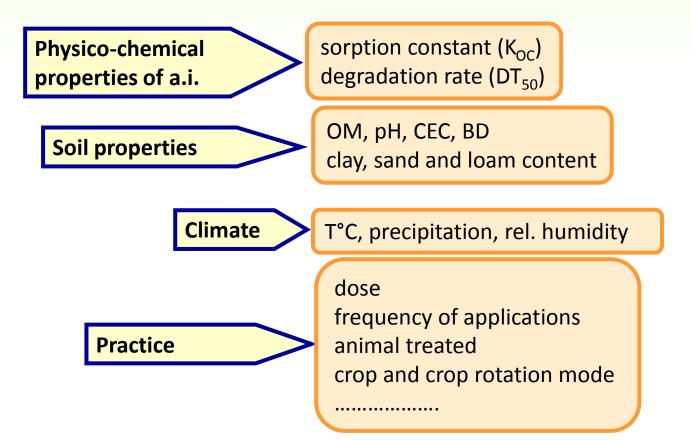
..\FATE TOOLS\PECsoil calculator.xls

PEC groundwater calculation

EXPOSURE: GROUNDWATER

DIRECT CONTAMINATION: wells and well borings **LEACHING**: after rain events or irrigation practices. Gravity is the main force involved.

Crucial properties of pesticides with respect to groundwater


Biodegradability \rightarrow **long half-life** in soil, **Mobility** \rightarrow **low affinity to organic matter water solubility** \rightarrow **high water solubility**

PARAMETERS INFLUENCING CHEMICAL LEACHING TO GROUNDWATER

Parameters selection for PECgw modelling

MANAGEMENT RELATED TO SUBSTANCE/CROP PARAMETERS (REFER TO GAP)

NUMBER OF APPLICATIONS: worst case options should be used.

APPLICATION RATES: worst case options should be used. For all models, the dose should be corrected for the amount of crop interception occurring.

APPLICATION DATES: worst case options should be used, but realistic values may be used for additional simulations.

INCORPORATION DEPTH: the majority of applications are likely to be to foliage or to soil surface, and the depth is therefore unnecessary. However, some compounds may be incorporated and in such cases the label recommendation for incorporation depth (usually ca. 20 cm) should be used as input.

Identified proper model for PEC calculation:

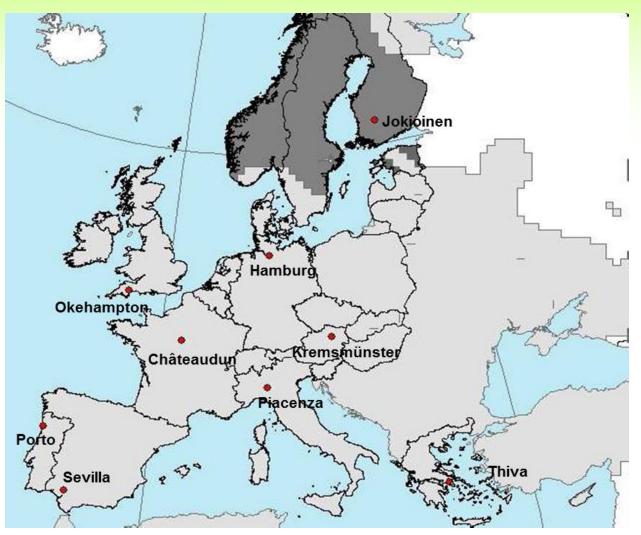
4 models

Groundwater

Pearl, Pelmo, Macro, PRZM

Identified standard scenarios for:

Groundwater


9 European scenarios

FOCUS scenarios

FOCUS scenarios

Crop	C	H	J	Γĸ	[N	P	0	S	[T
apples	+	+	+	+	+	+	+	+	+
grass (+ alfalfa)	+	+	+	+	+	+	+	+	+
potatoes	+	+	+	+	+	+	+	+	+
sugar beets	+	+	+	+	+	+	+	+	+
winter cereals	+	+	+	+	+	+	+	+	+
beans (field)		+	58	+	+	-	2	C.28	.935S
beans (vegetables)			-3	8			+	8	+
bush berries			+	0			1	0	20
cabbage	+	+	+	+		10	+	+	+
carrots	+	+	+	+			+	35	+
citrus			10			+	+	+	+
cotton			<u>_</u>	2			0.11	+	+
linseed		1		2	+	1			
maize	+	+		+	+	+	+	+	+
oilseed rape (summer)			+		+		+		
oilseed rape (winter)	+	+		+	+	+	+		
onions	+	+	+	+			+		+
peas (animals)	+	+	+	22 -	+	1	5	22 	2
soybean	8.	2 () :		52	1) C	+	5	92 	3
spring cereals	+	+	+	+	+		+	8	1
strawberries		+	+	+		38	- 23	+	25
sunflower			85	33		+	2	+	
tobacco			35	38	-	+	2		+
tomatoes	+					+	+	+	+
vines	+	+		+		+	+	+	+

C Châteaudun, H Hamburg, J Jokioinen, K Kremsmünster, N Ökehampton, P Piacenza, O Porto, S Sevilla, T Thiva.

× Active ingredient : 0.1 μg/L

refined assessment with prejudice is required, or monitoring programme of 5 y at least

× NON-relevant metabolite : 0.75 μg/L

if 0.75 μ g/L > NON-rel. metabolite > 10 μ g/L \rightarrow monitoring programme of 3 y is required (Italy)

if NON-relevant metabolite is > 10 μ g/L \rightarrow no authorisation shall be granted

× RELEVANT metabolite: 0.1 μg/L refined assessment is required with prejudice

TEPS.

Ospedale Luigi Sacco Polo UNIVERSITARIO

Parameters selection for PECgw modelling

 Proportion of each metabolite formed or individual rate constants for the formation of each metabolite
 Physico-chemical properties
 Crop-management parameters taken from the intended GAP (intercept, etc.)
 Soil sorption values (Koc, Kom)
 Degradation rates

Parameters selection for PECgw modelling

SORPTION PARAMETERS

Koc is the Soil Organic Carbon-Water Partitioning Coefficient

$$K_{oc} = K_d / f_{oc}$$

Where $K_d = C_{solid} / C_{water}$ is the "distribution coefficient" or "soil-water" partitioning coefficient

f_{oc} = fraction of organic carbon in soil or sediment

 K_{oc} values are useful in predicting the mobility of organic soil contaminants; higher K_{oc} values correlate to less mobile organic chemicals, while lower K_{oc} values correlate to more mobile organic chemicals

MOBILITÀ NEL SUOLO	K _{oc}				
Molto grande	0-50				
Grande	50-150				
Media	150-500				
Bassa	500-2000				
Molo bassa	2000-5000				
Immobile	>5000				

SORPTION PARAMETERS

PEARL, PELMO, PRZM, and MACRO now all use the **Freundlich adsorption coefficient (Kf)**, however previous versions of PRZM used the Kd. The Freundlich adsorption coefficient (Kf), is defined as:

$$x/m = Kf C^{1/n}$$

Freundlich adsorption isotherm

Where x/m is the content of substance sorbed (mg/kg), C is the concentration in the liquid phase (mg/L), **1/n is the exponent of the isotherm**

1/n is determined in each laboratory sorption experiment (batch sorption), and the arithmetic mean value should be used as model input.

When there is no data, a default value of 0.9 should be used. If a linear sorption has been determined the value may be set to

1.

Parameters selection for PECgw modelling

SORPTION PARAMETERS

Regulation (EC) no 1107/2009 recommends that Soil sorption results (Kfoc, Koc or Kfom, Kom) are required from 4 SOILS FOR PARENT COMPOUND, and from 3 SOILS FOR METABOLITES

✤ Where these are all agricultural soils, FOCUS recommends to use the geometric mean values of sorption constants, unless the sorption is known to be pHdependent.

If results are less than the recommended No of agricultural soils, use of worst case results (LOWEST SORPTION) is more appropriate.

☆In cases where a large number of additional data points are available (9 or more), a median value may be more appropriate.

DEGRADATION RATES

Regulation (EC) no 1107/2009 recommends that degradation rate studies are undertaken in <u>4 soils for the parent compound</u> and <u>3 soils for metabolites</u> (laboratory studies initially, and then, if necessary, field studies).

THEREFORE:

- ✓ If PARENT compound has been studied in 4 soils, use of geometric mean of DT50s
- ✓ If METABOLITES were studied in min. 3 soils, use of geometric mean of DT50s
- ✓ In cases where a large number of additional data points are available (*i.e.* 9 or
- more), a median values may be more appropriate
- ✓ if LESS than the recommended number of soils were studied, use of worst-case results

Ospedale Luigi Sacco POLO UNIVERSITARIO Sistema Socio Sanitario Regione Lombardia ASST Fatebenefratelli Sacco

MANAGEMENT RELATED TO SUBSTANCE/CROP PARAMETERS (REFER TO GAP)

NUMBER OF APPLICATIONS: worst case options should be used.

APPLICATION RATES: worst case options should be used. For all models, the dose should be corrected for the amount of crop interception occurring.

APPLICATION DATES: worst case options should be used, but realistic values may be used for additional simulations.

INCORPORATION DEPTH: the majority of applications are likely to be to foliage or to soil surface, and the depth is therefore unnecessary. However, some compounds may be incorporated and in such cases the label recommendation for incorporation depth (usually ca. 20 cm) should be used as input.

MANAGEMENT RELATED TO SUBSTANCE/CROP PARAMETERS (REFER TO GAP)

CROP INTERCEPTION - 1

EFSA guidance

The actual amount of active substance reaching soil is derived from the maximum application rate reduced by crop interception if plants are present at the time of application. When application is made to bare soil according to the GAP, crop interception is not required.

In other cases, the following tables need to be followed, also checking the bbch monograph

Crop			Stage		
	BBCH [#] 0-9	BBCH [#] 10-69		BBCH [#] 71–75	BBCH [#] 76–89
Apples	without leaves 50	flowering 60		early fruit development 65	full canopy 65
	BBCH [#] 0–9	BBCH [#] 10-69		•	BBCH [#] 71–89
Bushberries	without leaves 40	flowering 60		flowering 60	full foliage 75
Citrus	all stages 80	•			·
	BBCH [#] 0–9	BBCH [#] 11–13	BBCH [#] 14–19	BBCH [#] 53–69	BBCH [#] 71–89
Vines	without leaves 40	first leaves 50	leaf development 60	flowering 60	ripening 75

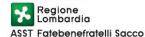
 Table 1.4:
 Interception (%) by apples, bushberries, citrus and vines dependent on growth stage

[#]The BBCH code is indicative (Meier, 2001).

MANAGEMENT RELATED TO SUBSTANCE/CROP PARAMETERS (REFER TO GAP)

CROP INTERCEPTION - 2

Table 1.5: Interception by other crops dependent on growth stage

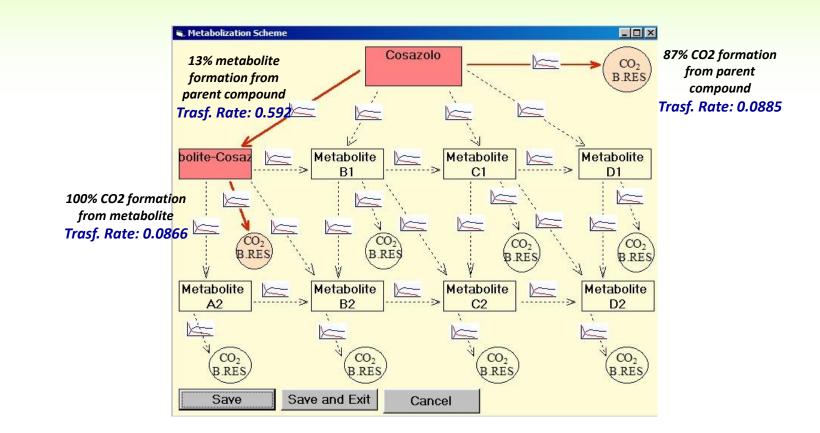

Сгор	Bare – emergence BBCH [#]	Leaf development	Stem elongatio	on	Floweri	ng	Senescence Ripening
	0- 09	10-19	20-39		40-89		90-99
Beans (field + vegetable)	0	25	40		70		80
Cabbage	0	25	40		70		90
Carrots	0	25	60		80		80
Cotton	0	30	60		75		90
Grass##	0	40	60		90		90
Linseed	0	30	60		70		90
Maize	0	25	50		75		90
Oil seed rape (summer)	0	40	80		80		90
Oil seed rape (winter)	0	40	80		80		90
Onions	0	10	25		40		60
Peas	0	35	55		85		85
Potatoes	0	15	60		85		50
Soybean	0	35	55		85		65
Spring cereals	0	0	BBCH 20-29*	30-39*	BBCH 40-69	BBCH 70-89	80-
			20	80	90	80	
Strawberries	0	30	50		60		60
Sugar beets	0	20	70 (rosette)		90		90
Sunflower	0	20	50		75		90
Tobacco	0	50	70		90		90
Tomatoes	0	50	70		80		50
Winter cereals	0	0	BBCH 20-29*	30-39*	BBCH 40-69	BBCH 70-89	80
(20	80	90	80	

[#]The BBCH code is indicative (Meier, 2001).
^{##}A value of 90 is used for applications to established turf.

*BBCH code of 20-29 for tillering and 30-39 for elongation.

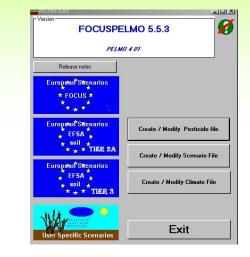
Sistema Socio Sanitario

10) Leave default value for plant uptake factor, unless user can adjusted it to measured values, if substance specific uptake factors have been determined in appropriate experiments;


11) Insert henry constant, Koc value, Freundlich exponent

- 12) Click on Done
- 13) Now we need to calculate the transformation rates for each metabolite given (here only 1) and for CO₂ production (both for parent compound and for each metabolite considered), using the following expression:
- ln2

DT50parent x (%metabolite or CO2/100)



Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria

Sistema Socio Sanitario 8 Ospedale Luigi Sacco POLO UNIVERSITARIO

- 14) Save and exit
- **15) Enter on European scenarios FOCUS**
- 16) Select the crop, select your pesticide file,
- mark all locations interested for batch
- 17) Start Batch
- 18) Evaluation
- 17) Input values and output reports are
- now available

Evaluation of Simula	tion		_ 🗆 ×
	sazolo_wc_normal nter cereals	 18/11/20 Location Thiva (T), no irrigation 	013 Browse
Show tabular output Echo of I	nput data	Mass Balance	Ø
Ann. Av. Cor	c. in Leachate	FOCUS Summary Report	
Create Diagrams (Daily Tin Precipitation	e Step)	Y	Done
C Cumulative Non-cumulative	from: January to: Decembe	7 Image: Show Diagram	

Ospedale Luigi Sacco
 Polo UNIVERSITARIO

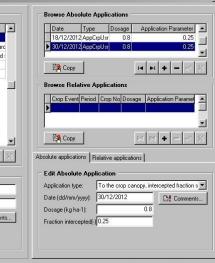
Evaluation of Simulation Select a Simulation Pesticide File: Cosazo	olo_wc_normal		• 18/11/	2013	Model Version: Date of this simulat Pesticide input file Simulated crop:	ion: 18 : cc	CUSPELMO 5.5.3 //11/2013 15:24: sazolo_wc_norma .nter cereals		
Crop: Winter	cereals 🔽 Loc	cation; Thiva (T), r	no irrigation	Browse	Simulated clop.		Intel Celeals		
- Show tabular output					Results for ACTIVE S	UBSTANCE (Cosa	zolo)		
Echo of Inpu	t data	Mass Bala	ance	Ø	Location	Selected Period	Flux (g/ha)	Percolate (L/m ^r)	Conc. (µg/L)
Ann. Av. Conc. in	Leachate	FOCUS Summa	arv Report	1)âteaudun (C)	(3/4)	0.00E+00	400.300	0.000
					Hamburg (H)	(19/8)	1.40E-16	604.100	0.000
- Create Diagrams (Dail) me Ste	0				Jokioinen (J)	(8/1)	3.43E-21	350.600	0.000
	P)			Done	Kremsmünster (K)	(18/3)	2.25E-19	892.500	0.000
Precipitation			<u> </u>	Done	Okehampton (N) Discepts (D)	(19/5)	2.16E-18 1.13E-15	927.200 739.900	0.000
C Cumulative	from: January	• 7 •			Piacenza (P) Porto (O)	(5/6) (1/2)	-4.17E-21	1102.40	0.000
Non-cumulative		• 26 •	Show Diagram		Sevilla (S)	(1/4)	-1.93E-20	178.540	0.000
1 Control and a control of the	Inecember		2000		Thiva (T)	(14/2)	1.10E-20	404.100	0.000
14 15	trations in Leachate 1.16E-20 0.00E+00	224.600 0.00E+00	0.000		METABOLI	TE A1 (Metabol	ite-Cosazolina)		
16	0.00E+00	0.00E+00	0.000			Selected	Flux	Percolate	Conc.
17	-4.96E-22	86.0900	0.000			Period	(g/ha)	(L/m²)	(µg/L)
18 19	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.000			(11/9)	1.34E-11	212.780	0.000
20	0.00E+00	9.9280000	0.000			(8/2)	3.86E-07	302.300	0.000
20	0.002+00	5.5200000	0.000			(12/11)	6.82E-09	367,600	0.000
Total	3.72E-20	1952.06	0.000		(K)	(9/14)	1.33E-08	411.500	0.000
80 Perc. (14/2)	1.10E-20	404.100	0.000		N)	(13/17)	1.48E-06	1161.10	0.000
						(4/11)	3.81E-07	807.800	0.000
						(14/3)	3.47E-07	1270.60	0.000
Results for MET	ABOLITE A1 (Metak	colite-Cosazol:	ina) in the per	colate at 1 m so	il depth	(2/1)	1.39E-13	334.540	0.000
Period	Metab.A1 Flux	Percolate	Pesticide Co			Both fo	or winter	cereal	s and
reriod	(g/ha)	(L/m ²)	(ug/L)	10.		-			
	19,		(F3/2/			sunflo	wers, Pl	:C value	es of
1	3.57E-12	156.700	0.000			Cocazo	lo and it	c mota	hali+
2	2.26E-11	179.500	0.000			COSu20		smeta	Joint
3	-1.26E-13	8.8360000	0.000			Word	below t	ho tria	aor
4 5	-1.42E-12	134.200	0.000		N	were	Delow l	ne urg	yer
5	-1.41E-13 1.84E-12	184.400 116.700	0.000			value	es for all	sconar	inc
U	1.046-12	116.700	0.000		•	vulu	25 JUI UI	scenur	103
	No. L. Contraction	54.0	100						

Ospedale Luigi Sacco POLO UNIVERSITARIO

Go to the first record in the table Go to the last record in the table Add a new (empty) record Delete a record Confirm changes ('post edit') Cancel changes (not always available): Copy a record

- 1) Edit \rightarrow substance \rightarrow click on "+", as insert record
- 2) Input all values reported below inside each record-sheet, and leave default values for other parameters. In Freundlich sorption, for our example case, use "Kom, pHindependent".

Cosa	zolo		click on optimum	moisture
Parameter	Value	Unit	Metaboli	te
Physical-Chemical features			Davameter	Value Unit
Molar mass	153	g/mol	Parameter	Value Unit
Water Solubility	256	mg/L	Physical-Chemical features	1 -
Henry constant	3.00E-02	Pa m ³ /mol	N olar mass	112 g/mol
Saturated vapour pressure	9.50E-06	Pa	Water Solubility	347 mg/L
Кос	347	mL/g	Saturated vapour pressure	6.70E-05 Pa
Freundlich exponent	0.897	Adim.	Кос	476 mL/g
DT50 soil	9	Days	Freundlich exponent	0.987 Adim.
Application features			DT50soil	8 Days
Application per year	3	#	DT50wat	0.5 Days
Time between application	12	Days	DT50sed	2 Days
Application rate	0.8	kg/ha		
Crops	Winter cerea	als/Sunflower	Formation from parent in s	13 %
BBCH	12-16	/22-25		



Ospedale Luigi Sacco Polo UNIVERSITARIO

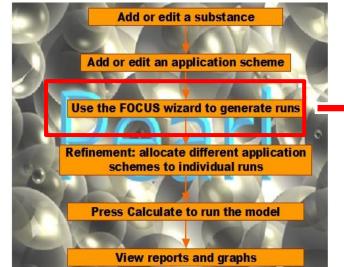
- 6) Click again on the row created before for the parent compound, and press on "Transformation Scheme" in order to open the relative window
- 7) Now click on "+", and select your metabolite from the dropdown list of "Edit metabolite".
- 8) Then, insert the metabolite's fraction transformed, save and

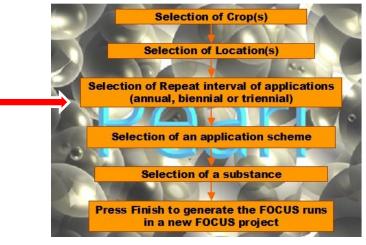
10) **Constant of the substance of appl.** (in this case canopy, interception fraction specified by the user), date of appl. dosage and fraction intercepted.

- 12) Then, click on "Focus wizard", select the crop in use, and all its available scenarios
- 13) Select your substance and one application scheme from the dropdown list, give a name to your project, and press "Finish"
- 14) Example: 9 runs will be created for winter cereals (one per

RunID	Selected	Name	ResultsSummary	ResultsDetailed		*	(P) Reports		
13	Yes	WCEREALS-CHATEAUDUN	NotAvailable	NotAvailable				ie i	ts
14	Yes	WCEREALS-HAMBURG	NotAvailable	NotAvailable			Graphs, user defined	. – .	•••
15	Yes	WCEREALSJOKIOINEN	NotAvailable	NotAvailable			100 c. 1. 1. 1. 1		•
16	Yes	WCEREALS-KREMSMUENSTER	NotAvailable	NotAvailable			Graphs, predefined	nar	ΪΛ
17	Yes	WCEREALS-OKEHAMPTON	NotAvailable	NotAvailable			📴 Сору	IIGI	
8	Yes	WCEREALS-PIACENZA	NotAvailable	NotAvailable					
19	Yes	WCEREALS-PORTO	NotAvailable	NotAvailable				ro	2
20	Yes	WCEREALS-SEVILLA	NotAvailable	NotAvailable				re,	d
21	Yes	WCEREALS-THIVA	NotAvailable	NotAvailable				,	
dit Run Scenario Si	mulation Co	antrol Dutput Control Swap Hydrological Mo	odule Run Status			T	HH+-ZX		
cenario Si	mulation Co		odule Run Status				I Commenta		
nario Si ame: W	CEREALS	SEVILLA		Pesticipe	nd scenario depen	[D! Comments		
nario Si ame: W cenario	CEREALS	SEVILLA		Pesticide - Subarnee:	nd scenario depen Cosazolo	[D! Comments		
nario Si ame: \v Scenario Location:	CEREALS	SEVILA		Substance:	Cosazolo	[dent	D! Comments		
cenario Si	CEREALS	SEVILLA			and the second	[dent	D! Comments		

16) Click on "Report" for obtaining the results' overview, both for parent compound and metabolite.


17) After a model run has been completed, the output can be analysed via the graphical function with the PEARL model


RESULT_TEXT	SUBSTANCE	COSAZ	COSM	LOCATION	APPLICATION SCHEME rown graphs.
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	CHATEAUDUN	
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	HAMBURG	Cosazo_WC_Ham_Krems
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	JOKIOINEN	Cosazo_WC_Jokioinen
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	KREMSMUENSTER	Cosazo_WC_Ham_Krems
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	OKEHAMPTON	Cosazolo_WC-okehamptor
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	PIACENZA	Cosazolo_WC_Piacenza_p
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	PORTO	Cosazolo_WC_Piacenza_p
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	SEVILLA	Cosazolo_WC_Sevilla
Concentration closest to the 80th percentile (ug/L)	Cosaz	0.000000	0.000000	THIVA	Cosazolo
< _1				0. 0. 0. 0. 0.	
Show in Inte	ernet Browser	Copy to Cli	pboard	0. <u>C</u> lose 0.	3 - 2 - 1 - 0 - 10'00 20'00 30'00 40'00 50'00 60'00 70'00 80'00 90'00 1

To sum up - PEARL 4.4.4

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria

PEC surface water calculation

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria

EXPOSURE: SURFACE WATER

Major routes of exposure:

SPRAY DRIFT: water much far away from the application area

DRAINAGE: removal of surplus water from land, via within-field drains

RUNOFF: close to treated area. Dependent on the topography, the soil texture, the amount of rain

SPRAYDRIFT

The amount of spraydrift reaching non-target areas is dependent on:

- Distance from the area of application
- Mode of application (formulation, technical equipment)
- Crop (height, growth stage)
- Weather (e.g. wind speed)

Spraydrift deposition generally calculated as: $\begin{array}{l} \textbf{DEPOSITION = DOSE_{nominal} \times f_{drift}} \\ f_{drift} = spraydrift fraction, dependent on crop, growth stage and distance from the target area \end{array}$

RUN-OFF

Occurrence and extent of run-off

- topography of the landscape (slope),
 soil texture (OC, presence/absence of sand and stone)
- intensity of the rain event
- distance between the treated area and the receiving ecosystem
- elapsed time between pesticide application and onset of rainfall.

Tiered Approach

STEP 1:	Single application, fixed scenario STEP 1-2 Calculator
► STEP 2:	Multiple applications, regional variation STEP 1-2 Calculator
STEP 3:	Advanced modeling, specific European scenarios SWASH, PRZM, MACRO, TOXSWA
► STEP 4:	Site-specific modeling

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Ospedale Luigi Sacco POLO UNIVERSITARIO

FOCUS MODELS

STEP 1/2: Steps 1-2 (Surface water Tool for Exposure Predictions - Step 1-2)

Step 1

> Single application of overall application rate, no interception

Step 2

> Single or multiple application, differences in timing of application (Mar-May, Jun-Sep, Oct-Feb), northern or southern europe, interception (depending on crop)

STEP 3: SWASH (Surface WAter Scenarios Help) mit drei vers. Unterprogrammen

- Step 3
 - > 10 scenarios with realistic combination of climate, crop, soil and agricultural practice
- > application method (ground spray, air blast, ...)
- > application timing based on different crops

STEP 4: SWAN (Surface Water Assessment eNabler)

step 4

reducing of drift entries (buffer strips, drift reducing nozzles) reducing of runoff entries (vegetated filter strips)

ASST Fatebenefratelli Sacco

STEP1

- Not correlated to climate, soil topography, crop.
- Drift values have been calculated at the 90th percentile from BBA (2000). Values for a 1m "no spray zone" for arable crops and a 3m "no spray zone" for vines, orchards and hops have been selected
- At Step 1 the run-off/erosion/drainage loading to the water body was set at 10% of the application for all scenarios.
- At Step 1, degradation in the water and sediment compartments is dependent on the DT50sediment/water (combined water + sediment value).

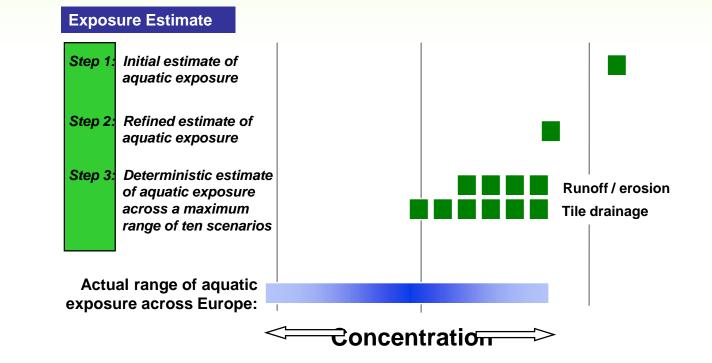
STEP2

- × Refinement
- Degradation is assumed to follow first-order kinetics in soil, surface water and sediment
- Drift loadings: The fraction of each application reaching the adjacent water is both a function of method and number of applications.
- the amount of pesticide that enters the soil at Step 2 is corrected for crop interception.
- Four days after the final application, a run-off/erosion/drainage loading is added to the water body. This loading is a function of the residue remaining in soil after all of the treatments (g/ha) and the region and season of application.

In common with Step 1, the run-off/erosion/drainage entry is distributed to between water and sediment at the time of loading according to the compound.
Asst Fatebenefratelli Sacco

PEC surface water calculation

STEP 1 input data

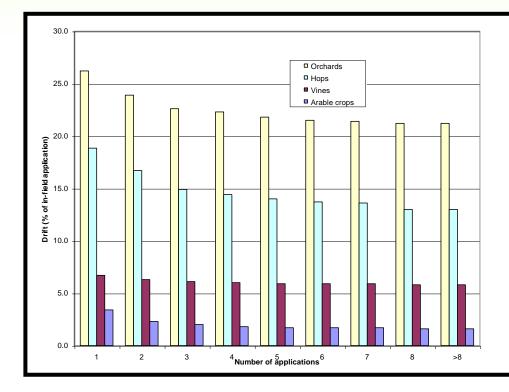

- solubility
- adsorption coefficient Koc
- molecular weight a.i. and metabolite
- met maximum % in w/s studies
- met maximum % in soil studies
- degradation rate in water/sediment (no DT_{50} in water!!!)
- STEP 2 input data
- Same set of data of step 1, than:
- degradation rate in water phase
- degradation rate in sediments
- degradation rate in soil
- number of applications, crop type, amount intercepted, area of use in EU

Ospedale Luigi Sacco POLO UNIVERSITARIO

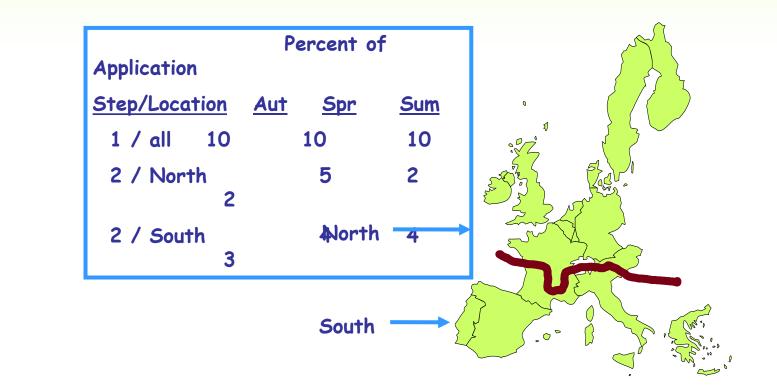
Logic of the FOCUS Approach

Sistema Socio Sanitario Regione Lombardia ASST Fatebenefratelli Sacco

Step 1 and 2 model

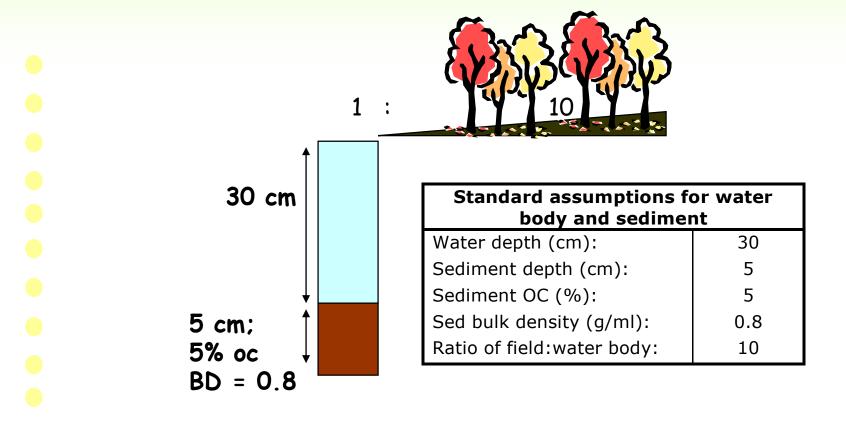


Step 1 and 2: Drift Loadings



Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Sistema Socio Sanitario
Ospedale Luigi Sacco
POLO UNIVERSITARIO
ASST Fatebenefratelli Sacco

Step 1 and 2: Runoff and Drainage Assumptions



Step 1 and 2: Scenario Assumptions

Step 1 and 2: Chemical Data

Chemical properties

- solubility
- sorption coefficient

degradation rates in soil, water and sediment
 Additional data for metabolites

- MW of parent and metabolite
- maximum observed in soil studies

- maximum observed in water/sediment studies Application data

- rate per application
- number of applications
- type of crop
- extent of canopy interception
- region of use within EU

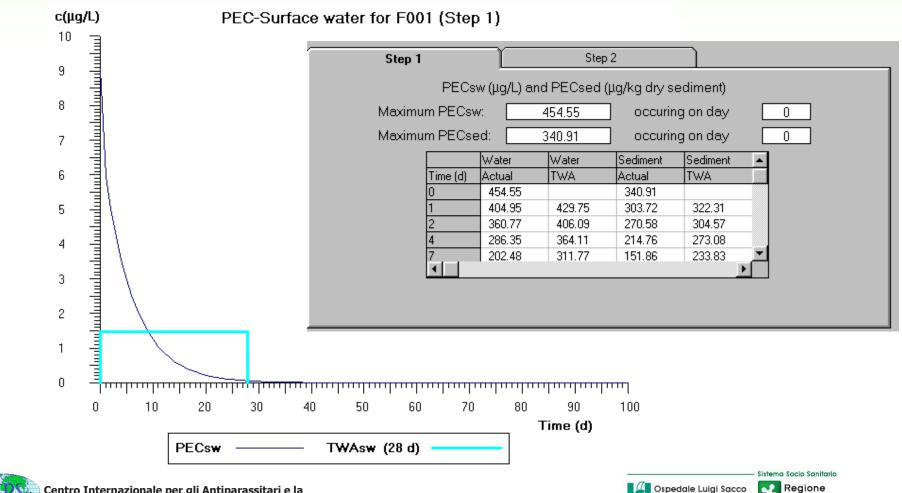
STEP 2: Crop interception

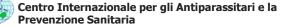
crop		no	minimal	average	full canopy
		interc eption	crop cover	crop cover	
cereals, spring		0	0.25	0.5	0.7
cereals, winter		0	0.25	0.5	0.7
citrus		0	0.7	0.7	0.7
cotton		0	0.3	0.6	0.75
field beans		Ω	0.25	0.4	0.7
grass / alfalfa 🛛 🦯		5	on ook		0.75
hops 🔫	CI	asses t	or each (crop	0.7
legumes		• no i	nterceptio	n	0.7
maize			•		0.75
oil seed rape, spr		🔹 mini	imal crop	cover	0.75
oil seed rape, wir			•		0.75
olives		• ave	rage crop	cover	0.7
pome / stone fruit		• full	canopy		0.7
pome / stone fruit		· Iun	cunopy		0.7
potatoes					0.7
soybeans					0.75
sugar beet					0.75
sunflower		0	0.2	0.5	0.75
tobacco		0	0.2	0.7	0.75
vegetables, bulb		0	0.1	0.25	0.4
vegetables, fruiting		0	0.25	0.5	0.7
vegetables, leafy		0	0.25	0.4	0.7
vegetables, root		0	0.25	0.5	0.7
vines, early applns		0	0.4	0.5	0.7
vines, late applns		0	0.4	0.5	0.7
appln, aerial		0	0.2	0.5	0.7
appln, hand (crop < 50	cm)	0	0.2	0.5	0.7
appln, hand (crop > 50	cm)	0	0.2	0.5	0.7
no drift (incorp/seed trt	mt)	0	0	0	0

PECsw calculation: data input

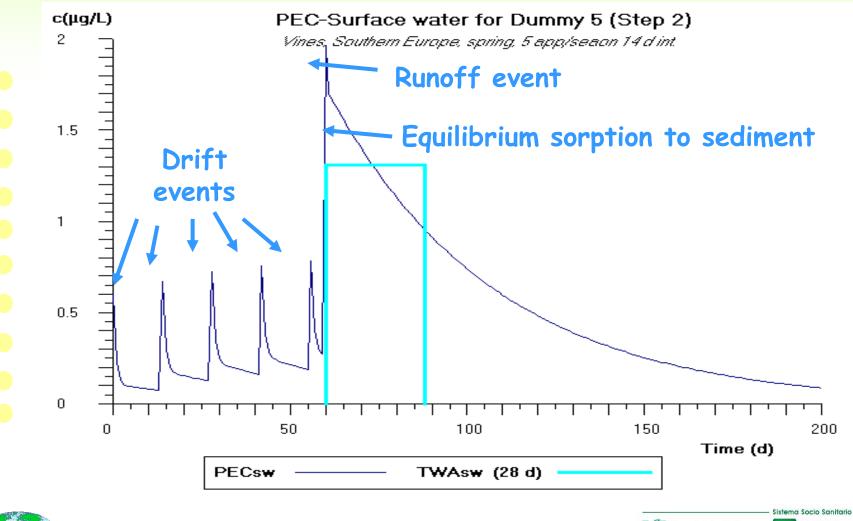
Active ingredient:	Dummy 1			
Comment:	Potatoes, Southern Eur	ope, spring, 1 app/season,	soil incorporation	
Substance specific data Water solubility (mg/L)	6000.00	DT50 in soil (d):	6.00	
use KOM KOC (L/kg)	344.80	DT50 in water (d):	6.00	_ Record -
DT50 in sediment/wate system (d):	r 6.00	DT50 in sediment (c	i): 6.00	Add
system (u).				
				Delete
				Delete Copy
	Application pattern Application rate of Number of applica	a.i. (g/ha): 3000.00 tions per season: 1 💌	Compound to be calculated • Active substance • Metabolite	Сору

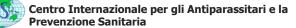
PECsw calculation: default data - 🗆 🗙 🚝 Steps 1-2 in FOCUS: Scenarios for Surface Water Step 1: Input route assumptions Step 2: Input route assumptions Step 2: Crop interception Surface water definitions Step S 3 Surface water definitions Value Parameter 30 Water depth (cm) 5 Sediment depth (cm) Effective sediment depth (cm) 1 5 Sediment organic Carbon (%) 0.8 Sediment bulk density (kg/L) 10 Ratio of field / water body Copy into Clipboard Done


PECsw calculation: results


Active ingredient: Dummy 6 Dummy 6 Dummy 7 Dummy 1 Comment: Potatoes, Southern Europe, spring, 1 app/season, soil incorporation Step 1 Step 2 PECsw (µg/L) and PECsed (µg/kg dry sediment) Maximum PECsed: 595.21 Water Water Water Water Yes 2 Save Data	Surface wa	<i>ST</i> 2 ter Tool for Ex	<i>EPS 1</i> posure P Versior	reditions		and Step 2	STEP 2
Step 1 Step 2 PECsw (μg/L) and PECsed (μg/kg dry sediment) Maximum PECsw: 172.62 Maximum PECsed: 595.21 Occurring on day 4 Water Water Water Water Time (d)* Actual	Active ingredient:	Dummy 6 Dummy 7					•
PECsw (μg/L) and PECsed (μg/kg dry sediment) Maximum PECsw: <u>172.62</u> occuring on day <u>4</u> Maximum PECsed: <u>595.21</u> occuring on day <u>4</u> <u>Water Water Sediment Sediment </u> <u>Time (d)* Actual TWA Actual TWA</u>	Comment:	Potatoes, Sout	hern Europe	, spring, 1 a	pp/season,	soil incorporation	
Maximum PECsw: 172.62 occuring on day 4 Maximum PECsed: 595.21 occuring on day 4 Water Water Sediment A Time (d)* Actual TWA Actual TWA	Step 1		Step	o 2			
Time (d)* Actual TWA Actual TWA			172.62	occurii	ng on day		
		m PECsed:	595.21				
		Water	Water	Sediment			Save Data
Den est		Water Time (d)* Actual	Water	Sediment Actual			Save Data
2 137.01 154.30 472.42 532.04		Water Time (d)* Actual 0 172.62	Water TWA	Sediment Actual 595.21	TWA		
4 108 75 138 39 374 96 477 16		Water Time (d)* Actual 0 172.62 1 153.79	Water TWA 163.21	Sediment Actual 595.21 530.27	562.74		Save Data Report
7 76 90 118 51 265 13 408 62 💌 🗠 🗠		Water Time (d)* Actual 0 172.62 1 153.79 2 137.01	Water TWA 163.21 154.30	Sediment Actual 595.21 530.27 472.42	562.74 532.04		Report
		Water Time (d)* Actual 0 172.62 1 153.79 2 137.01 4 108.75	Water TWA 163.21 154.30 138.39	Sediment Actual 595.21 530.27 472.42 374.96	TWA 562.74 532.04 477.16		

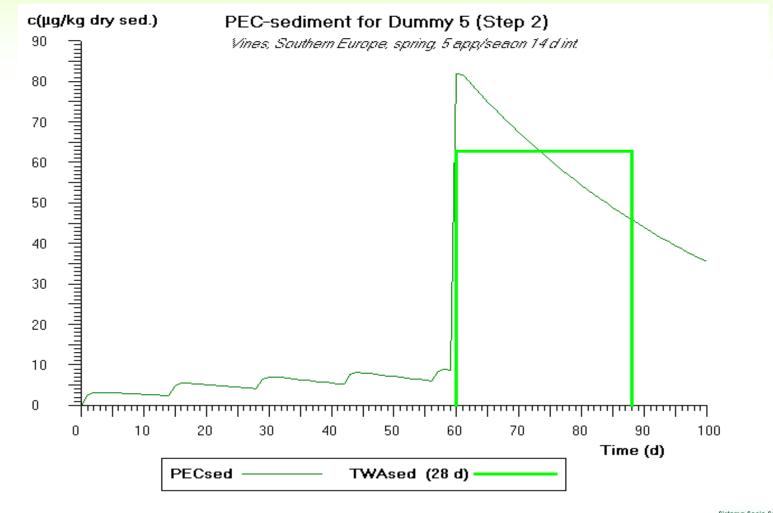
Ospedale Luigi Sacco POLO UNIVERSITARIO Sistema Socio Sanitario

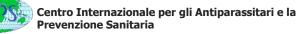

Step 1: Example Results



Lombardia ASST Fatebenefratelli Sacco

Step 2: Example Results for Water




Lombardia ASST Fatebenefratelli Sacco

Regione

Ospedale Luigi Sacco

Step 2: Example Results for Sediment

STEP3 – Swash shell

10 SCENARIOS (6 FOR DRAINAGE, 4 FOR RUN-OFF) identified according to the worst case nature of their inherent agroenvironmental characteristics: climate, soil, slope (cropped land does not occur in areas with average slopes > 15%; drainage occurs predominantly on areas with slopes of 4% or less).

- 🗴 D1 Lanna
- × D2 Brimstone
- × D3 Vredepeel
- × D4 Skousbo
- × D5 La Jailliere
- × D6 Váyia, Thiva
- × R1 Weiherbach
- R2 Valadares, Porto
- 🗴 R3 Ozzano, Bologna
- 😕 R4 Roujan

Six of the scenarios characterise inputs from drainage and spray drift whilst four characterise inputs from runoff and spray drift.

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Realistic combination of worst case characteristics for drainage and runoff!

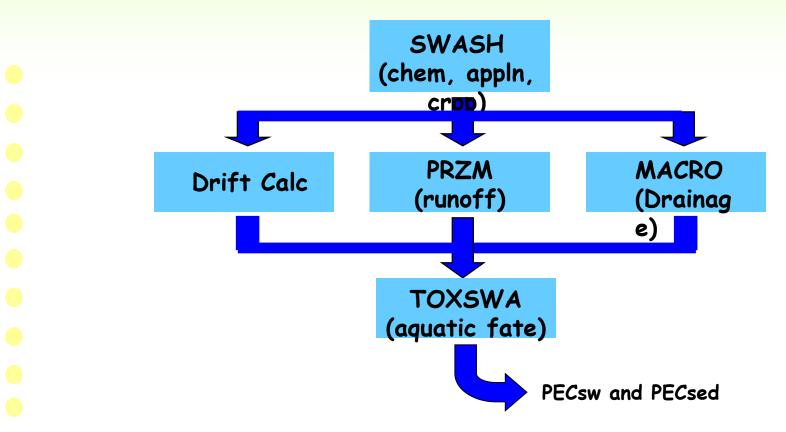
Sistema Socio Sanitario

STEP3 – Swash shell

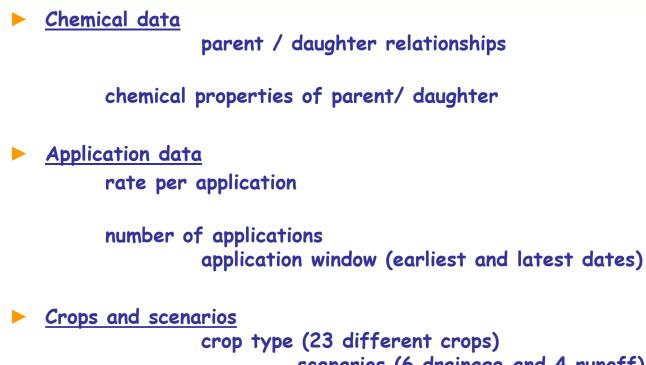
- The model MACRO was chosen to calculate drainage inputs to surface water bodies.
- The Pesticide Root Zone Model (PRZM) was selected to calculate runoff and erosion loadings into surface water bodies for four of the Step 3 FOCUS surface water scenarios.
- * The TOXSWA model describes the behaviour of pesticides in a water body at the edge-of-field scale, i.e. a ditch, pond or stream adjacent to a single field. It calculates pesticide concentrations in the both the water and sediment layers.
- **x** TOXSWA considers four processes: (i) Transport, (ii) Transformation, (iii) Sorption and (iv) Volatilisation. The TOXSWA model does not simulate the drainage or runoff/erosion processes itself, but uses the fluxes calculated by other models as entries into the water body system of TOXSWA.

 TOXSWA in FOCUS does not simulate the formation of metabolites in water or in sediment.
 Sistema Socio Sanitario Prevenzione Sanitaria

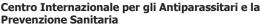
Step 3 models


TOXSWA p	roject : l	NewName7					×		
e <u>E</u> dit Scenari	o <u>V</u> iew į	<u>R</u> uns <u>G</u> raphs <u>H</u> e	lp					<u> </u>	
Projects	ľ	🖞 View/Make inpul	file 🗰 Calculation	n	🛷 Help	😮 Close			
Browse Runs									
		FOCUS step 3 run				Results	😑 Report	👰 PRZM 🖓 TOX	5¥
000000007	Yes	False	Run7			Not available	11 C 1		
							💹 Graphs		
							All files for graphical		
							output selected	WASH database.	
							📴 Сору	project with all possible runs	for
								substance and crop location.	
· · · · · · · · · · · · · · · · · · ·								project with all possible runs	for
dit Run un Component	e Latar	ral Entries Simul	ation Control 📔 Ou	itput Contro	d Run Status	1		substance, crop, waterbody t	
an component		iarenuies pillu	auon contror ou	ilipul Conili	nun status	1		ario combination.	
Run name: F	Run7					BLO	Comments	ects, define applications and	
nunname. jr	nunn						.omments	put for MACRO, PRZM and	
Scenario –					Pesticide and sce	nario dependent			
Name:	D1 (Mete	eo station: Lanna)	· .		Substance:	Test compound 1_sw	▼	ubstance database MACRO - e files PRZM, TOXSWA subs	
Water body:	Ditch		•		Application scheme:	Default_Scheme	▼	automatically present.	яđ
Crop:						Initial conditions fo			
								ubstance database MACRO - e files PRZM and exit SWAS	
									_

STEP 3 CALCULATIONS



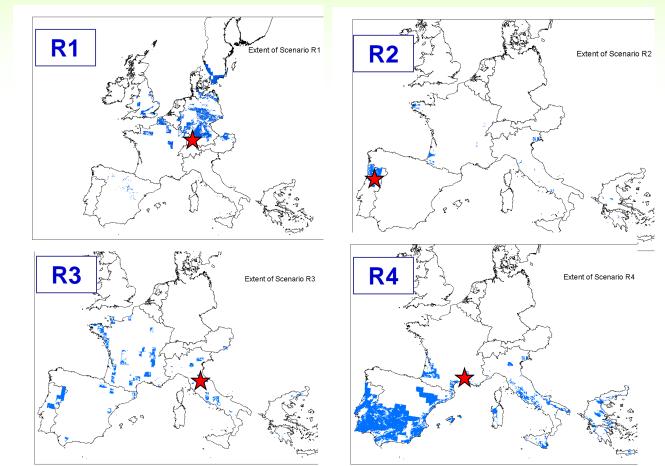
Sistema Socio Sanitario Regione Lombardia ASST Fatebenefratelli Sacco


USER-DEFINED INPUTS (entered in SWASH)

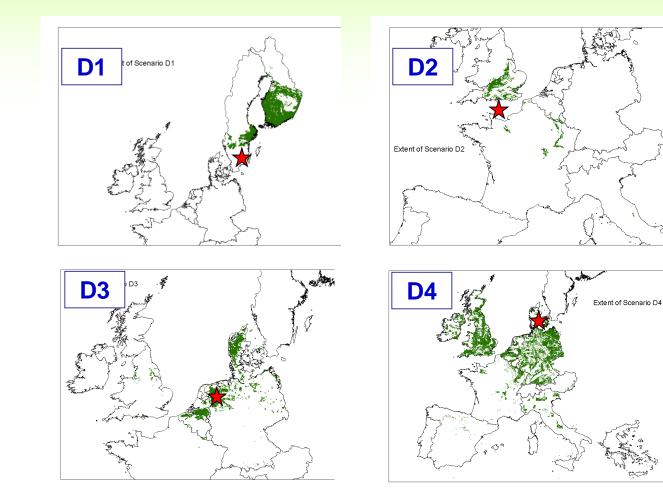
scenarios (6 drainage and 4 runoff) appropriate scenarios are defined for

crop

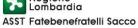
FIXED SCENARIO PARAMETERS


Agronomic data cropping dates (planting, maturation, harvest) growth data (root depth, plant height, canopy) Soil data properties of soil profile topographical data (slope, field dimensions) Climatic data (daily) precipitation (and irrigation, if appropriate) evapotranspiration temperature Water body types ditch, pond and stream dynamic hydrology with upstream catchments

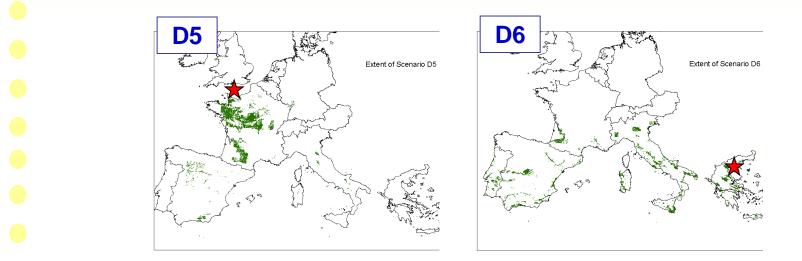
Extent of FOCUS runoff scenarios



Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria



Extent of FOCUS drainage scenarios



Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Sistema Socio Sanitario
Ospedale Luigi Sacco
Polo UNIVERSITARIO
OSPEDATO

Extent of FOCUS drainage scenarios (continued)

Calculated scenario parameters

- Application dates
 - specific application dates are calculated by Pesticide Application Tool (PAT) within PRZM:
- avoids application on days with precipitation
- ensures precipitation within 10 days of appln
- Simulation dates
 - depending upon the date of the first application, a specific simulation period is selected for simulation:
 - 12 months for PRZM
 - 16 months for MACRO

Calculations performed by PRZM and MACRO

- PRZM results represent edge-of-field runoff and erosion containing water, soil and chemical; MACRO results represent tile drainage from beneath treated fields
- Most scenarios have available runoff or drainage data from field experiments for comparison
- For selected year, outputs include:
 - hourly runoff or drainage volume
 - hourly chemical concentration
- Output files are transferred to TOXSWA for simulation of aquatic fate

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria

PEC surface water mitigation

STEP 4: generally used to introduce mitigations to be reported in the label according Commission Regulation (EU) No 547/2011 of 8 June 2011.

> Which water bodies are to be protected? To be defined before starting with the evaluation.

- All surface waters, whether natural or artificial, are to be considered relevant <u>EXCEPT</u>:
 - Overflow ditches: ditches running alongside cultivated fields for the collection of excess water.
- Irrigation reservoirs/outlets: Water sources intended only or the irrigation.

 Perched aquifers: Water sources whose water level is at least one meter above the level of the crop treated.

SW/SED input values

- **DT50 soil:** geometric mean (normalised)
- **Koc**: minimum value, or arithmetic mean
- DT50 water, sediment, whole system: generally arithmetic mean, or worst-case.

 Mitigation measures are incorporated into Step 3 10 scenarios (resulting in a Step 4 calculation)

Table 7. 90th percentile worst-case values for reduction efficiencies for different widths ofvegetated buffers and different phases of surface runoff

Buffer width (m)	10-12	18-20
Reduction in volume of runoff water (%)	60	80
Reduction in mass of pesticide transported in aqueous phase (%)	60	80
n (for aqueous phase)	36	30
Reduction in mass of eroded sediment (%)	85	95
Reduction in mass of pesticide transported in sediment phase (%)	85	95
n (for sediment phase)	19	11

Model

💦 SWAN v4.0.1			×
	Surface Water Assessment ■ Tasks ■ Select Mode Select SWASH Project Select Mitigation Options Run-off Spray Drift Dry Deposition Review/Save Parameters Input batch parameters Input batch parameters Create Step 4 Files View Summary View Report Finished	Select Tool Mode Generate new Step 4 run Load Step 4 parameter file Filename: View reports Generate new Step 4 batch run	
Tessella Technolegy & Consulting	Help About	Exit < Back Next >	

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria

Model

Nozzle reduction: 0	%		
💿 Use FOCUS (Step 3) m	ass loadings		
O Select buffer width (ma	ss loadings wi	ill be calcu	lated)
Buffer width: 0.75	🖌 m		
🔘 Enter mass loadings dir	ectly (for first a	applicatior)
Pond mass loading:	0	mg/m²	
Ditch mass loading:	0	mg/m²	
Stream mass loading:	0	mg/m²	Includes upstream catchment

Substance:	6_sw (1 application, vapour pressure = 3.78E-09 Pa)
Crop:	Vines, late applns

Model

Manual Run-Off Reduction

Enter Run-off Mitigation Values	
Enter values manually	
Fractional reduction in run-off volume: 0	
Fractional reduction in run-off flux:	
Fractional reduction in erosion mass: 0	
Fractional reduction in erosion flux:	
Get using VFSmod	
Filter strip buffer width: 🛛 🗸 🗸 m	

WHICH MITIGATION?

- Anti-drift nozzles? No spray zones?
- × Vegetated buffer?
 - Hedgerows?

High technology?

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria International Centre for Pesticides and Health Risk Prevention (ICPS)

Step 4....<u>Mitigation Measures</u>

Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria

PEC air calculation

Pesticides in Air: Considerations for Exposure assessment (FOCUS, 2005).

- Tier 1: trigger.
 - Vapour pressure lower than 10⁻⁵ Pa (20°C) for plants and 10⁻⁴ Pa (20°C) for soil
 - Tier 2: modelling for the evaluation of residue deposition vs. distance from edge field.

Tier 3: application of mitigation measurements to reduce PEC

	Crop and/ or situation	Country	Product name	F G or I	Pests or Group of pests controlled	orm	ulation	Application Application rate per treatment						PHI (days)	Remarks:	
	(a)			(b)	(c)										(1)	(m)
						'yp e	Conc. of as	method kind	growth stage & season	number min max	interval between applicati	kg as/hL min max	water L/ha min max	kg as/ha min max		
Ί						l-f)	(i)	(f-h)	(j)	(k)	ons (min)			IIIII IIIIX		
	Asparagus	Italy	Sencor SC	F	Weeds	SC	600	Broad- cast overall	BBCH 00 (pre- emergence)	1	-	0.070- 0.140	300-500	0.35-0.42	60	
	Carrots	Italy	Sencor SC	F	Weeds	SC	600	Spray	Post- emergence BBCH 13	1	-	0.035- 0.081	300-500	0.175- 0.245	60	
/									Pre- emergence	1		0.035- 0.093	300-500	0.175-0.28	60	
	Potatoes	Italy	Sencor SC	F	Weeds	SC	600	Sprayin g	Post- emergence BBCH 12-51	3	14	0.140- 0.233	300-500	0.07+ 0.07+ 0.07	60	
	Soybean	Italy	Sencor	F	Annual broad- leaved weeds	SC	600	Sprayin g	Pre- emergence or Pre-seeding	1	-	0.042- 0.070	300-500	0.210	-	
									Pre-seeding / pre planting	1		0.042- 0.070		0.21		
Ί					Annual					1		0,056-0,09	,	0.28		
	Tomatoes	Italy	Sencor SC	F	broad- leaved weeds	SC	600	Broad- cast	Post emergence/ post- transplanting	or 1+1	14	0,03-0,05	300-500	1° treatment 0,09-0,12 2° treatment 0,12-0,15	30 Sistema Socio	nitario
		Internazi zione Sani		li An	tiparassita	i e la									Regio	

ASST Fatebenefratelli Sacco